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Abstract In this work, a hierarchic system of QSAR
models from 1D to 4D is considered on the basis of the
simplex representation of molecular structure (SiRMS).
The essence of this system is that the QSAR problem is
solved sequentially in a series of the improvedmodels of the
description of molecular structure. Thus, at each sub-
sequent stage of a hierarchic system, the QSAR problem is
not solved ab ovo, but rather the information obtained
from the previous step is used. Actually, we deal with a
system of solutions defined more exactly. In the SiRMS
approach, amolecule is represented as a system of different
simplex descriptors (tetratomic fragments with fixed
composition, structure, chirality and symmetry). The level
of simplex-descriptor detail increases consecutively from
1D to 4D representations ofmolecular structure. It enables
us to determine the fragments of structure that promote or
interferewith the given biological activity easily.Molecular
design of compounds with a given level of activity is pos-
sible on the basis of SiRMS. The efficiency of themethod is
demonstrated for the example of the analysis of substituted
piperazines affinity for the 5-HT1A receptor.

Keywords 1D–4D QSAR Æ Simplex descriptors Æ
Molecular design Æ Hierarchic system Æ 5-HT1A agonists

Introduction

Presently, the technology of creation of new drugs, as a
rule, includes the stage of QSAR (quantitative structure-

activity relationship) researches. Nowadays there are
many different QSAR methods [1–5]. They differ mainly
by the principles and levels of representation and
description of the molecular structure. The degree of
adequacy of the molecular structure models varies from
1D to 4D representations.

The 1D models consider only the gross-formula of a
molecule (for example, alanine—C3H7NO2). Actually,
such models reflect only the composition of the mole-
cule. Obviously, it is impossible to solve adequately
‘‘structure-activity’’ tasks using such approaches. These
models have an auxiliary role.

The 2D models contain information about the
structure of the compound and are based on its struc-
tural formula [6].

Such models reflect only the topology of the mole-
cule. These models are very popular. The capacity of
such approaches is that the topology model of molecular
structure in an implicit kind contains information about
possible conformations of the compound.

The 3D QSAR models [1–4] give the full structural
information, taking into account composition, topology
and spatial shape of the molecule for one conformer only.
These models are the most widespread. However, the
choice of the analyzed conformer is mostly accidental.

The most adequate description of molecular structure
will be given by 4D-QSAR models [5]. These models are
similar to 3D models, but as compared to them, the
structural information is considered for a set of con-
formers (conditionally, the fourth dimension), instead of
one fixed conformation.

In thiswork, ahierarchic systemofQSARmodels from
1D to 4D has been considered on the basis of a simplex
representation of molecular structure (SiRMS) [7–10].
This approach is based on QSAR problem solution via a
sequence of the permanently improved molecular struc-
ture models. Thus, at each stage of the hierarchical sys-
tem, the QSAR task is not solved ab ovo, but with the use
of information received from a previous stage. In fact, it is

V. E. Kuz’min (&) Æ A. G. Artemenko Æ P. G. Polischuk
E. N. Muratov Æ A. I. Hromov Æ A. V. Liahovskiy
S. A. Andronati Æ S. Y. Makan
A.V. Bogatsky Physico-Chemical Institute of the National
Academy of Sciences, 7 Ukraine, Lustdorfskaya doroga 86,
Odessa, 65080, Ukraine
E-mail: victor@farlep.net
Tel.: +38-04-82652012
Fax: +38-04-82225127

J Mol Model (2005) 11: 457–467
DOI 10.1007/s00894-005-0237-x



proposed to deal with a system of permanently improved
solutions. This approach allows more effective interpre-
tation of theQSARmodels obtained because it reveals the
molecular fragments/models for which the detailed
development of structure is important.

The scheme of such a technology is shown in Fig. 1.
Information from QSAR models of the lowest level is
transferred (curve arrow) to models of a higher level
after the corresponding statistical processing (block
>Statistical models� in Fig. 1), during which the most
significant structural parameters are chosen. It is nec-
essary to point out that after 2D, the QSAR task is
solved on the 4D level, because no a priori information
about the ‘‘productive’’ conformation (the conformer
which most effectively interacts for biological target) is
available for 3D QSAR models. This information comes
up only after the construction of 4D QSAR models and
calculation of the activity of all conformers considered.
Information about the ‘‘productive’’ (the most active)
conformation is transferred to the 3D-QSAR level. At
this stage, it is possible to construct the most adequate
>structure-property� models. In all cases (1D–4D),

the structural information is processed by the different
statistical methods for obtaining the QSAR relations
(block ‘‘Statistical models’’ in Fig. 1).

The principle feature of this strategy is that not only a
hierarchy of models but also a hierarchy of purposes are
taken into account (Fig. 1, unit - >Final Aims�).
Evidently, there cannot be only one model that will solve
all the problems related to the influence of structure of
the set of the studied molecules on the property exam-
ined. Hereby, for solving every concrete task, it is nec-
essary to develop the set of different QSAR models,
some of which are more suitable for the prognosis of the
property studied, others for interpretation of the rela-
tions obtained, and yet others for molecular design.
These models all together, in complex, work out the
problem of creation of a new perspective of compounds
and matters with the given set of properties. The
important feature of such an approach is that the gen-
eral results obtained by a few different independent
models always are more relevant. Thus, we assume that
the proposed strategy allows the solution of all problems
relevant to virtual screening, modeling the functional
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Fig. 1 Hierarchical technology of solving QSAR and Drug-Design tasks
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(biological) targets, advancing hypotheses about mech-
anisms of action, and finally, designing new compounds
with a complex of useful properties.

This hierarchic strategy differs from the known hier-
archic QSAR approach [11]. In this, the complication
level of the structure representation rises among de-
scriptors: topostructural, topochemical, geometrical,
quantum-chemical, and physicochemical. In our ap-
proach, the system of descriptors is the same at all lev-
els—these are simplexes (tetratomic fragments of
molecular structure), and the hierarchic system consists
of increasing the molecular structure representation
adequacy from 1D to 4D models. Furthermore, taking
into account the target hierarchy is also an important
moment of our strategy (see Fig. 1).

Materials and methods

Hierarchic System on the Base of SiRMS

Any molecule can be represented as a system of different
simplexes (tetratomic fragments of fixed composition,
structure, chirality and symmetry) (Fig.2).

The total number (N) of all possible simplexes in an
n-atomic structure is

N ¼ n!

ðn� 4Þ! � 4!

At the 1D level, a simplex is a combination of four
atoms contained in the molecule (Fig. 3). The simplex
descriptor (SD) at this level is the number of quadruples
of atoms of definite composition. For compound
(AaBbCcDdEeFf...), the value of SD (AiBjClDm) is
K=f(i)Æf(j)Æf(l)Æf(m), where f ðiÞ ¼ a!

ða�iÞ!�i! : The values of
f(j), f(l), f(m) have been calculated analogously. It is
possible to define the number of smaller fragments
(‘‘pairs’’, ‘‘triples’’) on the same scheme. In this case,
some of parameters of i, j, l, m are equated to zero.

At the 2D level, the connectivity of atoms in a sim-
plex (11 base topological types, Table 1), atom type and
bond nature (single, double, triple, aromatic) were con-
sidered. Atoms in a simplex can be differentiated on the

basis of different characteristics, especially: (1) nuclear
charge (nature of atom); (2) partial atom charge [12] (see
Fig. 3) (3) lipophilicity; [13] (4) atomic refraction; (5)
donor/acceptor of hydrogen in the potential H-bond;
etc. For atom characteristics, which have real values
(NO. 2–4 in the list) at the preliminary stage, division of
the value range into definite discrete groups is carried
out. The number of groups (G) is a tuning parameter
and can be varied (as a rule G=3–7). For atom char-
acteristic 5, the atoms have been divided into three
groups: A (acceptor of hydrogen in H-bond), D (donor
of hydrogen in H-bond), I (indifferent atom).

The use of diverse variants of differentiation of sim-
plex vertexes (atoms) represents the principle feature of
our approach. We consider that specification of atoms
by their nature (for example, C, N, O), as in many
QSAR methods limits the possibilities of pharmaco-
phore fragment selection. For example, if the –NH–
group has been selected as the determining activity
fragment (pharmacophore) and the ability to form H-
bonds is the factor determining its activity, then we shall
miss such donors of H-bonds as, for example, OH-
groups, etc. The use of atoms differentiation by donor/
acceptor of H-bond avoids the situation illustrated
above. One can give analogous examples for other atom
properties (lipophilicity, partial charge, refraction, etc).

Thus, the SD at 2D-level is the number of simplexes of
fixed composition and topology. It is necessary to note
that for a 2D-QSARanalysis, other structural parameters
corresponding to molecular fragments of different size
can be used together with simplex descriptors.

Actually, the 2D-descriptors generated by us are
similar to the fragmentary parameters used in the
HQSAR method (holographic QSAR). [2] The differ-
ence is that during the generation of descriptors we take
into account both connected (Table 1, base types e, f, h,
i, j, k) and unconnected fragments (Table 1, base types
a, b, c, d, g), and also take into account not only the
nature of atoms but also their different physical and
chemical properties (charge, lipophilicity, etc.).

At the 3D-level, the stereochemistry of a molecule is
taken into account. It is possible to differentiate all the
simplexes as right (R), left (L), symmetrical achiral (S),
or planar achiral (P) ones. The stereochemical configu-
ration of simplexes is defined by modified Kahn-Ingold-
Prelog rules [8]. The SD at this level is the number of
simplexes of fixed composition, topology, chirality and
symmetry (Fig. 3).

For 4D-QSAR models, each molecular structural
parameter (MSP) is calculated by summing the products
of the descriptor value for each conformer (MSP k) and
the probability of realization of the corresponding con-
former (Pk).

MSP ¼
XN

k¼1
MSPk � Pkð Þ;

where N is the number of conformers considered and
MSPk is the descriptor value for conformer k.
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Fig. 2 Scheme of molecule fragmentation to simplexes
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Fig. 3 Examples of generation of simplex descriptors for alanine at 1D–4D levels
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As is well known, [14] the probability of conforma-
tion Pk is defined by its energy:

Pk¼ 1þ
P
i 6¼k

EXP
� Ei�Ekð Þ

RT

� �� ��1
;
P

k

Pk¼1;

where Ei and Ek are the energies of conformations i and
k, respectively. The conformers are analyzed within an
energy band of 5–7 kcal mol�1. Thus, the molecular SD
at the 4D-level takes the probability of realization of the
3D-level SD in the set of conformers into account. The
subsequent examples (Fig. 3) demonstrate the repre-
sentation of molecules as simplex sets at the different
levels of structure detailing (1D–4D).

A large number of simplex descriptors has thus been
generated in the method. The PLS-method proved effi-
cient for working with a large number of variables [15].
It is well-known [16] that PLS-equation can be repre-
sented as

Y ¼ b0 þ
XN

i¼1
bixi;

where Y is the appropriate activity, bi are PLS regression
coefficients, xi is the i-th descriptor value (the number of
simplexes of i-th type in the SiRMS) and N is the total
number of descriptors.

Using this equation it is not difficult to make a reverse
analysis in the SiRMS approach. The contribution of
each atom in the molecule can be defined as the sum of
PLS regression coefficients (bi) of all simplexes containing
this atom divided by the number of atoms in the simplex.

Let the PLS regression coefficients for the simplexes
S1–S5 (Fig. 2) accordingly be equal to b1–b5. Then it is
easy to estimate the contribution of separate atoms to
the activity studied. So, for example, the contributions
(C) of carboxyl atoms will be equal:

C oð Þ ¼
b1 þ b2 þ b4 þ b5

4
; CðCÞ ¼

b1 þ b2 þ b3 þ b4

4

The results obtained can be represented on the mol-
ecule using color-coding according to the atoms’
contribution. Realization of molecular design of com-
pounds of a given activity level via the generation of the
allowed combinations of simplexes that determine the
property investigated, is possible on the base of SiRMS.

Thus, the proposed approach does not have a prob-
lem in optimal alignment of the set of considered mol-
ecules, which takes place in CoMFA analogues [1, 3, 4].
The SiRMS approach is similar to HQSAR [2] but has
none of its restrictions (only topological representation
of molecular structure) and deficiencies (ambiguity of
descriptor formation when procedure of hashing of
molecular holograms is realized). Besides, contrary to
HQSAR, in SiRMS, different physical and chemical
properties of atoms (charge, lipophilicity, etc.) can be
taken into account.

Results and discussion

The efficiency of the proposed method was demon-
strated using as an example an affinity analysis of
substituted piperazines for the serotonin 5-HT1A recep-
tor. The values of pKi (pKi=�lg(Ki), where Ki—inhi-
bition constant) are shown in Table 2.

The multiple linear regression (MLR) [16] and partial
least squares (PLS) [15] statistical methods have been
used for QSAR analysis. Genetic algorithm [17] and
trend-vector procedures [18] have been used for variable
selection in PLS. The structures of the compounds for
3D-stages and 4D-stages were obtained using the MM+
force field [19]. At the 4D-stage, for all molecules
investigated the procedure of conformational search was
applied, and the conformers within an energy band of
7 kcal mol�1 above the optimal one were selected.

First, the 1D-QSAR task was solved. More than 400
SD were calculated. The result of the regression analysis
is given by the equation:

Pki ¼ þ4:30þ 0:11n NOOClð Þ þ 0:22nðHÞ � 0:16nðCÞ
� 0:80nðNNNNÞ;

R2 ¼ 0:710;Q2 ¼ 0:664; SE ¼ 0:67;F ¼ 22:3;

where n(...) is the number of indicated combinations of
atoms, R the correlation coefficient, Q the leave-one-out
cross-validated R, SE the standard error of prediction,
and F the Fischer criterion. This model allows us to con-
clude that the simultaneouspresence of the atomsN,O,O,
Cl and a higher saturation of the compound enhance the
affinity; the presence of a large number of carbon atoms

Table 1 All possible topological types of molecular simplexes
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Table 2 Experimental values of pKi for the compounds investigated

*R N N
X

n
 

 
 R n X pKi 

1 4 H 8.54 
2 3 o-CH3 5.61 
3 3 o-Cl 7.14 
4 3 p-CH3 5.31 
5 3 m-CH3 5.33 
6 5 o-CH3 5.79 
7 5 H 7.36 
8 4 o-Cl 7.59 
9 3 H 7.27 

10 4 p-CH3 5.39 
11 4 o-CH3 5.89 
12 4 m-Cl 7.52 
13 4 p-Cl 7.41 
14 

N

O

O  

6 H 7.64 
15 4 H 8.00 
16 4 m-Cl 6.74 
17 5 m-CH3 6.82 
18 5 o-Cl 8.17 
19 4 o-Cl 8.28 
20 5 p-CH3 6.79 
21 4 p-CH3 6.89 
22 5 o-CH3 7.88 
23 6 o-CH3 7.04 
24 6 m-CH3 6.61 
25 6 p-CH3 6.36 
26 6 o-Cl 7.85 
27 

N

O

O  

2 o-CH3 5.00 

29 

N

NBr

O

 

4 H 5.77 

30 

N

NBr

O
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4 H 6.05 
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4 H 5.21 

38 
N

N

 

4 H 6.35 

 

28 N N
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 X  Y  pKi

39 CH3  H  4.47 
40 Cl  H  4.05 
41 Br  H  3.91 
42 Br  Cl 3.82 

Nr. Nr.

Nr.
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and four nitrogen atoms decrease the affinity. Obviously,
this model has an auxiliary role only, and cannot be used
for reliable prediction of activity of novel compounds.

Information about the constitution of compounds is
taken into account in 2D-molecular models. At this stage
the atoms in simplexes are differentiated on the basis of all
the characteristics mentioned above (1–5). The total
number of descriptors is more than 5 000. The MLR
model obtained has quite good statistical characteristics:

R2 ¼ 0:910; Q2 ¼ 0:883; F ¼ 56:7; SE ¼ 0:39

where, nc is the differentiation of atoms by nature, pc by
partial atomic charge, and lip by lipophilicity. The
atoms are divided into seven groups corresponding to
their partial charge: A<�0.1; �0.1<B<�0.05;
�0.05<C<�0.01; �0.01<D<0.01; 0.01<E<0.05;
0.05<F<0.1; G>0.1. The atoms are also divided into
seven groups corresponding to their lipophilicity:
A<�1; �1<B<�0.5; 0.5<C<�0.1; �0.1<D<0.1;
0.1<E<0.5; 0.5<F<1; G>1.

It is difficult to compare the equation obtained with
the 1D-regression model, but in both cases increasing

the degree of saturation (the
H H

fragments in

a 2D model) enhances the activity.

The QSAR task was also solved using the PLS-
method because this method is more acceptable than
MLR for a large number of structural parameters. A
comparative analysis of the PLS models obtained is

shown in Table 3. As expected, the quality of the
models improves at the transition from 2D to 4D-
levels. Taking 2D models as an example, one can see
that different ways of differentiating atoms in sim-
plexes lead to different results. The best models (6, 7)
were obtained when all variants of the differentiation
were used. It is obvious from Table 3 that the addi-
tional account of disconnected simplexes (Table 1,
types b, c, d) improves the predicting ability (Q2) of
the QSAR models (see the models 6, 7 and 8, 9,
respectively).

The most adequate model (Table 3, model 11) con-
structed used an analysis of the activity of different
conformers (within the framework of a 4D-QSAR
model) and selection of the most active ones. These
‘‘productive’’ conformers were used in the resulting 3D-
QSAR model. As Fig. 4 indicates, ‘‘productive’’ con-
formers differ from the most favorable ones by shape
and energy.

It is possible to trace the succession of the PLS
models obtained from 2D to 4D from Table 4, which
shows that the greater part of the simplexes selected (at
the different levels of molecular structure modeling)
have qualitatively similar influences on the activity ex-
plored. An example of the influence of different struc-
tural fragments on affinity is shown in Fig. 5. The
resulting influence of all simplexes examined is reflected
by the color-coding of the fragments of molecules both
promoting (red) and interfering (green) affinity for the 5-
HT1A receptor.

Table 3 QSAR models obtained by the PLS-method

Structural descriptors Atom differentiation type Dimension R2 Q2 Number of components

1 Simplexesa Atom nature (1) 2D 0.925 0.758 9
2 Simplexesa Partial charge (2) 2D 0.966 0.766 9
3 Simplexesa Lipophilicity (3) 2D 0.851 0.750 4
4 Simplexesa Refraction (4) 2D 0.782 0.728 3
5 Simplexesa Donor/acceptor of H-bond (5) 2D 0.768 0.605 5
6 Simplexesb All mentioned (1–5) 2D 0.837 0.768 10
7 Simplexesa All mentioned (1–5) 2D 0.927 0.827 5
8 Simplexesb All mentioned (1–5) 4D 0.951 0.753 8
9 Simplexesa All mentioned (1–5) 4D 0.948 0.831 7
10 Simplexesb All mentioned (1–5) 3D 0.833 0.662 3
11 Simplexesa All mentioned (1–5) 3D 0.961 0.854 8
12 Dragon � 2D 0.845 0.729 4
13 Dragon � 3D 0.826 0.740 3

aConnected (e, f) and disconnected (b, c, d) simplexes
bOnly connected (e, f) simplexes

pKi = 5.93 + 0.31 n H H nc - 2.05 n
F

D C
E pc- 0.65n 

H

N
nc -

- 0.24 n 
G

E E

E
lip -  0.55 n E E

D

D

lip + 0.27 n 
C

C C

C
pc
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Within the framework of the SiRMS (like the CoM-
FA method [1]), it is possible to define the relative
influence of the different physical and chemical factors
on the character of the molecule’s interaction with the
biological target. For this purpose, it is necessary to sum
and compare contributions of simplexes in a regression
model separately for every differentiation group. Thus,
the relative contribution of simplexes, where differenti-
ation of vertexes corresponds to the partial charges on
atoms, reflects the role of electrostatic factors; the rela-
tive contribution of simplexes, where atoms are differ-
entiated by lipophilicity, reflects the role of hydrophobic
factors, etc.

An analysis of the different QSAR models shows
that, in all likelihood, electrostatic and hydrophobic
interactions have roughly the same influence on the
affinity of substituted piperazines for the 5-HT1A

serotonin receptor (Fig. 6). The relative contribution
of simplexes, where atoms are differentiated by types
(nature), is also great (18–22%). This contribution in
the implicit form reflects the influence of all physical
and chemical characteristics on the interaction with
the receptor. It is interesting to note that the role of
H-bonds and dispersion forces (contribution of sim-
plexes, where atoms are differentiated by refractions)
into the ligand-receptor interaction is relatively small
(3–9%).

On the basis of the most adequate models (Table 3,
models No. 7, 9, 11), the molecular fragments with the
maximal influence on affinity have been defined (Table 5).
These results correspond roughly with the information of
the 1D-QSAR model (see above). Thus, for example,
fragments 1 and 3, which promote binding to the recep-
tor, correspond to combinations of the NOOCl atoms,

Fig. 4 The most favorable (a, c) and ‘‘productive’’ (b, d) conformers of molecules 18 and 14
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and fragments 5 and 6, which along with the piperazine
fragment prevent binding, correspond to the combina-
tions of the NNNN atoms. Such correspondences of the
different and independent QSARmodels can demonstrate
that the tendencies of the structure influence on affinity
revealed are steady enough. Naturally, these tendencies
can be modified after expansion of the set studied and
increase of its structural diversity.

Molecular design of perspective molecules has been
conducted on the basis of the information obtained
(Table 6). Experimental research on some of them are
planned in the future.

For the estimation of the efficiency of the proposed
method, we tried to solve the task using other QSAR
approaches. In particular, the solution of the QSAR task
using Dragon [20] descriptors gives adequate models
with worse statistical characteristics (Table 3, models

12,13). Moreover, the solution of the reverse task within
the DRAGON method is difficult, because a lot of
poorly interpreted parameters are involved in the model,
for example: [21] different topological indices, 2D
autocorrelations, RDF-descriptors, WHIM-descriptors,
GETAWAY-descriptors, BCUT-descriptors, 3D
MoRSE-descriptors, etc.

It should be noted that building adequate QSAR
models using the Lattice Model approach [4] failed.
Probably, this is related with the problem of molecular
alignment of heterogeneous and conformationally flexi-
ble structures. Such a problem is also found in the
popular 3D-QSAR approaches such as CoMFA, [1] and
HASL [3]. Therefore, we propose that the above men-
tioned lattice methods are little-suited for this set.

In conclusion, it is important to note that the results
obtained are not exhaustive, but represented for illus-

Table 4 Normalized influence of different simplexes on the affinity for the 5-HT1A receptor (‘‘+’’,‘‘-’’ are positive and negative infuences
on the affinity, respectively

Simplex atom differentiation type 2D 3D 4D 

C C

CN

 

lipophilicity 0.15 0.12 0.15 

H
C H

C

 

lipophilicity 0.09 0.08 0.09 

C C
C

C

 

nuclear charge 0.10 0.08 0.07 

C

C

C O

 

nuclear charge -0.19 -0.25 -0.28 

C C

C C

 

partial charge -0.14 -0.20 -0.23 

N C

CC

 

lipophilicity -0.13 -0.10 -0.12 

C O

C

Cl  
refraction 0.03 0.02 

C

Cl C

C

 

lipophilicity -0.03 0.01 

N C

CH

 

donor/acceptor of H-bond -0.01 0.05 

N

C
NC

 

partial charge 0.02 0.02
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tration of the possibilities and efficiency of the hierar-
chical QSAR strategy. Complete and detailed analysis of
‘‘structure-affinity to 5-HT1A receptor’’ relationship for

substituted piperazines will be represented as a separate
publication.

2D QSAR

28.6%

37.4%

3.4%

8.7%

0%

21.8%

3D QSAR

27.7%

29.6%3.9%

8.1%

12.4%

18.4%

4D QSAR

28.6%

32.3%
3.2%

7.9%

7.3%

20.7%

electorost atic

hydrophobic

H - bonding

dispersionic

other

nature atoms

Fig. 6 The relative influence of some physical and chemical factors into the peculiarity of ligand-receptor interaction estimated by the
different QSAR models

Fig. 5 Color-coding of molecular fragments with standpoint of their influence on the activity for the compounds 19 (a) and 32 (b) (red
fragment enhance the affinity, green —fragment decrease the affinity)
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Table 6 Designed compounds and predicted value of their activities

Promotes 
Cl

piperazine

1

-(CH2)4-, 
-(CH2)5- 

2

N

O

O 3

Interfering 

piperazine

CH3

4

N
N

(H)Hal

 5

N

N(CH3)Hal

O

Hal(H)

6
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